Concavidad y convexidad.

Determinar los intervalos de concavidad y convexidad, así como los puntos de inflexión de las siguientes funciones.

- 1. $g(x) = 4 3x^2$
 - s d
- 2. $f(x) = (x-1)^3$
 - s d
- 3. $h(x) = x^4 6x^2 + 9$
 - s d
- 4. $\phi(x) = x^6 3x^4$
 - s d
- $5. \ f(x) = \frac{-2x}{x^2 + 1}$
 - s d
- 6. $g(x) = \frac{x^2}{x^2 4}$
 - s d
- 7. $h(x) = x^2 + \frac{8}{x}$
 - s d
- 8. $\phi(x) = x^{5/3} x^{2/3}$
 - s d
- 9. $f(x) = x^4 2x^3$
 - s d
- $10. \ g(x) = 2 \sqrt{4 x^2}$
 - s d

Utilizando el criterio de la segunda derivada, determinar los máximos y/o mínimos locales de las anteriores funciones.

- 1. $g(x) = 4 3x^2$
 - s d
- 2. $f(x) = (x-1)^3$
 - s d
- 3. $h(x) = x^4 6x^2 + 9$
 - s d

- 4. $\phi(x) = x^6 3x^4$
 - s d
- $5. \ f(x) = \frac{-2x}{x^2 + 1}$
 - s d
- $6. \ g(x) = \frac{x^2}{x^2 4}$
 - s d
- 7. $h(x) = x^2 + \frac{8}{x}$
 - s d
- 8. $\phi(x) = x^{\frac{5}{3}} x^{\frac{2}{3}}$
 - s d
- 9. $f(x) = x^4 2x^3$
 - s d
- 10. $g(x) = 2 \sqrt{4 x^2}$
 - s d