(1) Trace la digráfica de la relación $R = \{ (1, 2), (2, 1), (3, 3), (1, 1), (2, 2) \}$ sobre $X = \{ 1, 2, 3 \}$.

(2) Escriba la relación como un conjunto de pares ordenados

- (3) Sea la relación R sobre el conjunto $\{1,2,3,4,5\}$ definida mediante la regla $(x,y) \in R$ si 3 divide a x-y.
 - (a) Enumere los elementos de R.
 - (b) Enumere los elementos de R^{-1} .
 - (c) Determine el dominio de R.
 - (d) Concluya el rango de R.
 - (e) Delimite el dominio de R^{-1} .
 - (f) Determine el rango de R^{-1} .
- (4) Determine si cada relación definida sobre el conjunto de enteros positivos es reflexiva, simétrica, antisimétrica, transitiva o un orden parcial.
 - (a) $(x, y) \in R \text{ si } x = y^2$.
 - (b) $(x, y) \in R$ si 3 divide a x y.
- (5) Sea X un conjunto no vacío. Defina una relación sobre P(X), el conjunto potencia de X, como $(A,B) \in R$ si $A \subseteq B$. ¿Es esta relación reflexiva, simétrica, antisimétrica, transitiva o un orden parcial?
- (6) Sean R y S relaciones sobre X. Determine si cada afirmación es verdadera o falsa. Si la afirmación es falsa, proporcione un contraejemplo.
 - (a) Si R y S son transitivas, entonces $R \bigcup S$ es transitiva.
 - (b) Si R y S son transitivas, entonces $R \cap S$ es transitiva.
 - (c) Si R y S son transitivas, entonces $R \circ S$ es transitiva.
 - (d) Si R es transitiva, entonces R^{-1} es transitiva.
 - (e) Si Ry Sson reflexivas, entonces $R\bigcup S$ es reflexiva.
 - (f) Si R y S son reflexivas, entonces $R \cap S$ es reflexiva.
 - (g) Si Ry Sson reflexivas, entonces $R\circ S$ es reflexiva.
 - (h) Si R es reflexiva, entonces R^{-1} es reflexiva.
 - (i) Si R y S son simétricas, entonces $R \bigcup S$ es simétrica.
 - (j) Si R y S son simétricas, entonces $R \cap S$ es simétrica.
 - (k) Si R y S son simétricas, entonces $R \circ S$ es simétrica.
 - (l) Si R es simétrica, entonces R^{-1} es simétrica.
 - (m) Si R y S son antisimétricas, entonces $R\bigcup S$ es antisimétrica.
 - (n) Si R y S son antisimétricas, entonces $R \cap S$ es antisimétrica.
 - (o) Si R y S son antisimétricas, entonces $R \circ S$ es antisimétrica.
 - (p) Si R es antisimétrica, entonces R^{-1} es antisimétrica.
- (7) ¿Qué es incorrecto en el siguiente argumento, el cual supuestamente muestra que para cualquier relación R sobre X que sea simétrica y transitiva es reflexiva?

Sea $x \in X$. Utilizamos la simetría para tener (x, y) y (y, x) ambos en R. Como $(x, y), (y, x) \in R$, por transitividad tenemos $(x, x) \in R$. Por lo tanto, R es reflexiva.

 $^{^{500}}$ canek.azc.uam.mx: 13/ 10/ 2006