CAPÍTULO

2

Métodos de Integración

1

2.7 Integrales impropias

Hasta aquí, al referirnos a la integral definida $\int_a^b f(x) \, \mathrm{d}x$ consideramos que f es una función continua en un intervalo cerrado [a,b], el cual tiene una longitud finita b-a. Es decir, para la integral definida $\int_a^b f(x) \, \mathrm{d}x$ se exige el cumplimiento de dos requisitos escenciales: la continuidad de la función f en todo el intervalo de integración y además que dicho intervalo sea cerrado. Son estas características las que dan sustento a la definición de la integral de Riemann:

$$\int_{a}^{b} f(x) dx = \lim_{|\Delta x| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i.$$

La finitud del intervalo [a,b] nos permite obtener un número finito n de subintervalos $[x_{i-1},x_i]$ y todos de longitud finita $\Delta x_i = x_i - x_{i-1}$; y la continuidad de f en todo el intervalo cerrado [a,b] nos permite asegurar la existencia de cada número $f(c_i)$ para $x_{i-1} \leq c_i \leq x_i$; con $i=1,2,3,\ldots,n$. Entonces, tiene sentido hablar de la suma de Riemann $\sum_{i=1}^n f(c_i) \Delta x_i$, ya que independientemente de la partición realizada, cada término $f(c_i) \Delta x_i$ está bien definido.

Si además de ser continua, $f(x) \ge 0$ para cada $a \le x \le b$, entonces la integral definida $\int_a^b f(x) \, \mathrm{d}x$ puede ser interpretada como el área de la región del plano limitada por la curva y = f(x) y las rectas y = 0, x = a, x = b. En general, para f continua en [a,b], la integral definida $\int_a^b f(x) \, \mathrm{d}x$ puede interpretarse como una suma algebraica de áreas (sumandos positivos); o bien, como una suma algebraica de números (positivos o negativos) . En cualquiera de los casos, la integral definida $\int_a^b f(x) \, \mathrm{d}x$ es un número real fijo.

^{1.} canek.azc.uam.mx: 13/1/2017

Ahora trataremos con integrales definidas en las que no se cumple la continuidad de la función f en un intervalo cerrado [a,b]; es decir, trataremos con integrales definidas donde no se cumple al menos una de las dos condiciones: continuidad de la función en el intervalo de integración y finitud del intervalo de integración.

- Denominamos integrales impropias aquellas que cumplen:
 - 1. El intervalo de integración tiene longitud infinita, sección 2.7.1.
 - 2. El integrando f tiene una asíntota vertical en el intervalo de integración, sección 2.7.2 (pág. 7).

2.7.1 Las integrales impropias $\int_a^{+\infty} f(x) dx$, $\int_{-\infty}^b f(x) dx$, $\int_{-\infty}^{+\infty} f(x) dx$

Vamos a considerar cada uno de los casos.

i. ¿Cómo calcular $\int_{a}^{+\infty} f(x) dx$?

Suponiendo la continuidad de la función f en el intervalo $[a, \infty)$, se puede asegurar que f es continua en el intervalo cerrado [a, r] para r > a.

Aquí procedemos de la siguiente manera.

- Primero, calculamos la integral definida $\int_a^r f(x) dx$, la cual resulta ser una función g(r).
- Segundo, se permite a r crecer indefinidamente y se calcula

$$\lim_{r \to +\infty} g(r) = \lim_{r \to +\infty} \int_{a}^{r} f(x) dx.$$

- Se concluye según sea el resultado del $\lim_{r \to +\infty} g(r)$.
 - a. Cuando $\lim_{r \to +\infty} g(r) = L$, con $L \in \mathbb{R}$, se dice que la integral impropia $\int_a^{+\infty} f(x) \, \mathrm{d}x$ converge a L y se escribe $\int_a^{+\infty} f(x) \, \mathrm{d}x = L$. Es decir, en este caso se asigna un valor numérico (L) a la integral impropia $\int_a^{+\infty} f(x) \, \mathrm{d}x$.
 - b. Cuando $\lim_{r \to +\infty} g(r) = \infty$, se dice que la integral impropia $\int_a^{+\infty} f(x) \, dx$ diverge $a \infty$. En este caso no se asigna un valor numérico a la integral impropia $\int_a^{+\infty} f(x) \, dx$. Se puede escribir $\int_a^{+\infty} f(x) \, dx = \infty$, pero teniendo presente que $\int_a^{+\infty} f(x) \, dx \xrightarrow{\text{diverge a} \atop \text{tiende a}} \infty$, y que $\infty \notin \mathbb{R}$.

Ejemplo 2.7.1 Calcular la integral impropia
$$\int_0^{+\infty} e^{-x} dx$$
.

▼ La función $f(x) = e^{-x}$ es continua en todo \mathbb{R} , luego es continua en el intervalo $[0, +\infty)$ y por lo mismo es continua en el intervalo cerrado [0, r] para r > 0.

Calculamos la integral definida $\int_0^r e^{-x} dx$.

$$\int_0^r e^{-x} dx = [-e^{-x}]_0^r = -e^{-r} - (-e^0) = -e^{-r} + 1 = 1 - e^{-r} \implies$$

$$\Rightarrow \int_0^r e^{-x} dx = g(r) = 1 - e^{-r}.$$

Ahora calculamos $\lim_{r \to +\infty} g(r)$.

$$\lim_{r \to +\infty} g(r) = \lim_{r \to +\infty} (1 - e^r) = \lim_{r \to +\infty} \left(1 - \frac{1}{e^r} \right) = 1 - 0 = 1 \implies$$

$$\Rightarrow \lim_{r \to +\infty} \int_0^r e^{-x} dx = 1.$$

Entonces, la integral impropia $\int_0^{+\infty} e^{-x} dx$ converge a 1.

$$\int_0^{+\infty} e^{-x} \, \mathrm{d}x = 1.$$

En este caso se asigna el valor numérico 1 a la integral impropia $\int_0^{+\infty} e^{-x} dx$.

Ejemplo 2.7.2 Calcular la integral impropia $\int_{1}^{+\infty} \frac{\mathrm{d}x}{\sqrt{x}}$.

▼ La función $f(x) = \frac{1}{\sqrt{x}}$ es continua en todo su dominio $D_f = (0, +\infty)$, por lo que es continua en el intervalo cerrado [1, r] para r > 1. Ahora,

$$\int_{1}^{r} \frac{\mathrm{d}x}{\sqrt{x}} = \int_{1}^{r} x^{\frac{1}{2}} \, \mathrm{d}x = \left[2x^{-\frac{1}{2}} \right]_{1}^{r} = 2\sqrt{r} - 2\sqrt{1} = 2\sqrt{r} - 2.$$

Es decir,

$$\int_{1}^{r} \frac{\mathrm{d}x}{\sqrt{x}} = g(r) = 2\sqrt{r} - 2.$$

Luego,

$$\lim_{r \to +\infty} g(r) = \lim_{r \to +\infty} \left[2\sqrt{r} - 2 \right] = +\infty.$$

Entonces,

$$\lim_{r\to +\infty} g(r) = \lim_{r\to +\infty} \int_1^r \frac{\mathrm{d}x}{\sqrt{x}} = +\infty.$$

Por lo tanto, la integral impropia $\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$ diverge a $+\infty$.

Es decir,
$$\int_{1}^{\infty} \frac{\mathrm{d}x}{\sqrt{x}} \xrightarrow{\text{diverge a tiende a}} +\infty$$
 y podemos escribir $\int_{1}^{\infty} \frac{\mathrm{d}x}{\sqrt{x}} = \infty$.

Ejemplo 2.7.3 Calcular la integral impropia $\int_0^\infty xe^{-2x} dx$.

▼ Por ser $f(x) = xe^{-2x}$ una función continua en todo su dominio \mathbb{R} , podemos asegurar su continuidad en el intervalo cerrado [0,r] para r>0. Determinaremos la integral definida $\int_0^r xe^{-2x} \, \mathrm{d}x$, calculando primero la integral indefinida $\int xe^{-2x} \, \mathrm{d}x$ mediante integración por partes.

$$\int xe^{-2x} dx = x \left(-\frac{1}{2}e^{-2x}\right) - \int -\frac{1}{2}e^{-2x} dx = -\frac{1}{2}xe^{-2x} + \frac{1}{2}\left(-\frac{1}{2}e^{-2x}\right) + C =$$

$$u = x \quad \& \quad dv = e^{-2x} dx;$$

$$du = dx \quad \& \quad v = -\frac{1}{2}e^{-2x}.$$

$$= -\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} + C = -\frac{1}{4}e^{-2x}(2x+1) + C.$$

Luego,

$$\int_0^r xe^{-2x} dx = \left[-\frac{1}{4} (2x+1)e^{-2x} \right]_0^r = -\frac{1}{4} (2r+1)e^{-2r} + \frac{1}{4}e^0 = \frac{1}{4} \left[1 - \frac{2r+1}{e^{2r}} \right] \Rightarrow$$

$$\Rightarrow \int_0^r xe^{-2x} dx = g(r) = \frac{1}{4} \left(1 - \frac{2r+1}{e^{2r}} \right).$$

Entonces, aplicando la regla de L'Hôpital,

$$\begin{split} \lim_{r \to \infty} g(r) &= \lim_{r \to \infty} \left[\frac{1}{4} - \frac{2r+1}{4e^{2r}} \right] = \frac{1}{4} - \lim_{r \to \infty} \frac{2r+1}{4e^{2r}} = \frac{1}{4} - \lim_{r \to \infty} \frac{(2r+1)'}{(4e^{2r})'} = \\ &= \frac{1}{4} - \lim_{r \to \infty} \frac{2}{8e^{2r}} = \frac{1}{4} - 0 = \frac{1}{4} \Rightarrow \\ &\Rightarrow \lim_{r \to \infty} g(x) = \lim_{r \to \infty} \int_0^r xe^{-2x} \, \mathrm{d}x = \frac{1}{4}. \end{split}$$

En este caso, la integral impropia $\int_0^\infty xe^{-2x} dx$ converge a $\frac{1}{4}$.

Por lo tanto, en este caso, la integral impropia $\int_0^\infty xe^{-2x} \, dx$ tiene un valor numérico asignado, que es $\int_0^\infty xe^{-2x} \, dx = \frac{1}{4}$.

ii. ¿Cómo calcular la integral impropia $\int_{-\infty}^{b} f(x) dx$?

Generalmente la expresión algebraica -r es asociada mentalmente con un número negativo, lo cual es debido a la presencia explícita del signo negativo (-) y sabemos que esto es cierto (-r < 0) cuando r > 0. Por simplicidad haremos uso de esta relación.

Considerando que r>0 podemos asegurar que -r<0 y además que $-r\to -\infty$ cuando $r\to +\infty$.

Hecha esta aclaración procedemos a calcular la integral impropia $\int_{-\infty}^b f(x) \, \mathrm{d}x$ en el supuesto de que la función f sea continua en el intervalo $(-\infty,b]$. El procedimiento es análogo al efectuado en el caso anterior. Con f continua en el intervalo $(-\infty,b]$ se asegura la continuidad de f en el intervalo cerrado [-r,b] para -r < b y calculamos la integral definida $\int_{-r}^b f(x) \, \mathrm{d}x$, la cual resulta ser una función g(r). Luego permitimos que $r \to +\infty$, para así lograr que $-r \to -\infty$, y calculamos $\lim_{r \to +\infty} g(r)$.

Se concluye, como en el caso anterior, aclarando si la integral impropia converge o o bien diverge.

Ejemplo 2.7.4 *Calcular la integral impropia* $\int_{-\infty}^{0} e^{x} dx$.

▼ Considerando r > 0, aseguramos que -r < 0 y además que $-r \to -\infty$ cuando $r \to +\infty$.

La función $f(x) = e^x$ es continua en toda la recta real, por lo que es continua en el intervalo cerrado [-r,0]. Calculamos la integral definida $\int_{-r}^{0} e^x \, \mathrm{d}x$.

$$\int_{-r}^{0} e^{x} dx = e^{x} \Big|_{-r}^{0} = e^{0} - e^{-r} = 1 - \frac{1}{e^{r}}.$$

Es decir,

$$\int_{-r}^{0} e^{x} dx = g(r) = 1 - \frac{1}{e^{r}}.$$

Entonces,

$$\lim_{r\to +\infty}g(r)=\lim_{r\to +\infty}\left(1-\frac{1}{e^r}\right)=1-0=1.$$

Esto es,

$$\lim_{r \to +\infty} g(r) = \lim_{r \to +\infty} \int_{-r}^{0} e^{x} dx = 1.$$

Por lo tanto, la integral impropia $\int_{-\infty}^{0} e^{x} dx$ converge a 1 y escribimos $\int_{-\infty}^{0} e^{x} dx = 1$.

En este caso se asigna un valor numérico (1) a la integral impropia $\int_{-\infty}^{0} e^{x} dx$.

Ejemplo 2.7.5 Calcular la integral impropia $\int_{-\infty}^{-1} \frac{\mathrm{d}x}{\sqrt[3]{x}}$.

▼ Considerando r > 1 aseguramos que -r < -1 y además que $-r \to -\infty$ cuando $r \to +\infty$.

La función $f(x) = \frac{1}{\sqrt[3]{x}}$ es continua en el intervalo cerrado [-r, -1].

Calculamos la integral definida $\int_{-r}^{-1} \frac{\mathrm{d}x}{\sqrt[3]{x}}$

$$\int_{-r}^{-1} \frac{\mathrm{d}x}{\sqrt[3]{x}} = \int_{-r}^{-1} x^{-\frac{1}{3}} \, \mathrm{d}x = \frac{3}{2} x^{\frac{2}{3}} \Big|_{-r}^{-1} = \frac{3}{2} \left[\sqrt[3]{x^2} \right] \Big|_{-r}^{-1} =$$

$$= \frac{3}{2} \left[\sqrt[3]{(-1)^2} - \sqrt[3]{(-r)^2} \right] = \frac{3}{2} \left[\sqrt[3]{1} - \sqrt[3]{r^2} \right] = \frac{3}{2} \left(1 - \sqrt[3]{r^2} \right)$$

Es decir,

$$\int_{-r}^{-1} \frac{\mathrm{d}x}{\sqrt[3]{x}} \, \mathrm{d}x = g(r) = \frac{3}{2} \left(1 - \sqrt[3]{r^2} \right).$$

Luego,

$$\lim_{r \to +\infty} g(r) = \lim_{r \to +\infty} \left[\frac{3}{2} \left(1 - \sqrt[3]{r^2} \right) \right] = \frac{3}{2} - \infty = -\infty.$$

Esto es,

$$\lim_{r\to +\infty} g(r) = \lim_{r\to +\infty} \int_{-r}^{-1} \frac{\mathrm{d}x}{\sqrt[3]{x}} = -\infty.$$

Se tiene en este caso que la integral impropia $\int_{-\infty}^{-1} \frac{dx}{\sqrt[3]{x}}$ diverge a $-\infty$.

Expresado de otra manera, $\int_{-\infty}^{-1} \frac{\mathrm{d}x}{\sqrt[3]{x}} \xrightarrow{\text{diverge a tiende a}} -\infty$, y podemos escribir $\int_{-\infty}^{-1} \frac{\mathrm{d}x}{\sqrt[3]{x}} = -\infty$ teniendo presente que $-\infty$ no es valor numérico.

iii. ¿Cómo calcular la integral impropia $\int_{-\infty}^{+\infty} f(x) dx$?

Por supuesto, se supone que f es una función continua en toda la recta real $\mathbb{R} = (-\infty, \infty)$.

Aquí se considera que para algún real a fijo:

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx.$$

- La integral impropia $\int_{-\infty}^{\infty} f(x) dx$ converge cuando ambas integrales $\int_{-\infty}^{a} f(x) dx & \int_{a}^{\infty} f(x) dx$ convergen.
- La integral impropia $\int_{-\infty}^{\infty} f(x) dx$ diverge cuando al menos una de las integrales $\int_{-\infty}^{a} f(x) dx$ o bien $\int_{a}^{\infty} f(x) dx$ diverge.

Ejemplo 2.7.6 Calcular la integral impropia $\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^2} \, \mathrm{d}x$.

▼ Tomando al real fijo a = 0 tenemos:

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^2} = \int_{-\infty}^{0} \frac{\mathrm{d}x}{1+x^2} + \int_{0}^{\infty} \frac{\mathrm{d}x}{1+x^2}.$$

Calculamos estas integrales impropias

a.

$$\int_0^\infty \frac{\mathrm{d}x}{1+x^2} = \lim_{r \to \infty} \int_0^r \frac{\mathrm{d}x}{1+x^2} = \lim_{r \to \infty} \left[\arctan x\right]_0^r = \lim_{r \to \infty} \left[\arctan r - 0\right] =$$
$$= \lim_{r \to \infty} \left[\arctan r\right] = \frac{\pi}{2}.$$

Entonces la integral $\int_0^\infty \frac{\mathrm{d}x}{1+x^2}$ converge a $\frac{\pi}{2}$.

b. Por ser $f(x) = \frac{1}{1+x^2}$ una función par:

$$\int_{-\infty}^{0} f(x) \, dx = \int_{0}^{\infty} f(x) \, dx \implies \int_{-\infty}^{0} \frac{dx}{1 + x^2} = \int_{0}^{\infty} \frac{dx}{1 + x^2} = \frac{\pi}{2}.$$

Entonces la integral $\int_{-\infty}^{0} \frac{dx}{1+x^2}$ converge a $\frac{\pi}{2}$.

c. Por lo tanto:

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^2} = \int_{-\infty}^{0} \frac{\mathrm{d}x}{1+x^2} + \int_{0}^{\infty} \frac{\mathrm{d}x}{1+x^2} = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Ejercicios 2.7.1 Integrales impropias. Soluciones en la página 13

1.
$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^4}.$$

$$7. \int_{e}^{\infty} \frac{\ln x}{x^2} \, \mathrm{d}x.$$

$$13. \int_0^\infty \frac{e^x}{e^x + 1} \, \mathrm{d}x.$$

$$2. \int_{1}^{\infty} \frac{\mathrm{d}x}{\sqrt[4]{x}}.$$

$$8. \int_0^\infty 4x e^{-2x} \, \mathrm{d}x.$$

$$14. \int_0^\infty \frac{e^x}{1 + e^{2x}} \, \mathrm{d}x.$$

$$3. \int_1^\infty \frac{\mathrm{d}x}{\sqrt{x^3}}.$$

$$9. \int_{e}^{\infty} \frac{\mathrm{d}x}{x(\ln x)^2}.$$

$$15. \int_{-\infty}^{0} \frac{x}{e^{x^2}} \, \mathrm{d}x.$$

$$4. \int_1^\infty \frac{\ln x}{x} \, \mathrm{d}x.$$

10.
$$\int_{-\infty}^{\infty} \frac{x \, dx}{(x^2 + 1)^{\frac{3}{2}}}.$$

$$16. \int_{-\infty}^{\infty} \frac{e^x \, \mathrm{d}x}{1 + e^{2x}}.$$

5.
$$\int_{0}^{\infty} 9e^{-3x} dx$$
.

11.
$$\int_0^\infty x^2 e^{-x} dx$$
.

17.
$$\int_0^\infty \frac{2x^3}{(x^2+1)^2} \, \mathrm{d}x.$$

6.
$$\int_{-\infty}^{0} \frac{x}{x^2 + 1} dx$$
.

12.
$$\int_0^\infty \frac{\arctan x}{x^2 + 1} \, \mathrm{d}x.$$

18.
$$\int_{-\infty}^{0} \frac{x^2}{x^2 + 1} \, \mathrm{d}x.$$

2.7.2 Integrales impropias $\int_b^a f(x) dx$ con asíntota vertical

Aquí consideramos integrales impropias del tipo:

- i. $\int_a^b f(x) dx$, con f continua en (a, b] y con x = a asíntota vertical.
- ii. $\int_a^b f(x) dx$, con f continua en [a, b) y con x = b asíntota vertical.
- iii. $\int_a^b f(x) dx$, con f continua en [a, b], excepto en $c \in (a, b)$ donde f tiene una discontinuidad infinita.

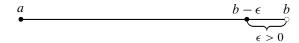
¿Cómo proceder para calcular estos tipos de integrales impropias?

En general, para calcular estas integrales impropias, se propone evitar el punto problemático x=a en las integrales de primer tipo; x=b en las de segundo tipo; x=c en las de tercer tipo.

¿Cómo evitar el punto problemático? Guardando una sana distancia de él. Dicha distancia será lograda considerando un número real positivo ξ , que servirá para denotar una separación del punto problemático. Es decir, el número $\xi > 0$ será utilizado para evitar el punto problemático:

i. x = a, considerando el intervalo cerrado $[a + \xi, b]$ en vez del intervalo semiabierto (a, b]:

ii. x = b, considerando el intervalo cerrado $[a, b - \xi]$ en vez del intervalo semiabierto [a, b):



iii. x = c, considerando los intervalos cerrados $[a, c - \xi]$ y $[c + \xi, b]$ en vez de los intervalos [a, c) y (c, b]:

Ya sabemos cómo evitar el punto problemático. Ahora procedemos a calcular la integral definida de una función continua en un intervalo cerrado.

i. Calculamos $\int_{a+\xi}^{b} f(x) dx$, con f continua en un intervalo cerrado $[a+\xi,b]$. Aquí se obtiene una función:

$$g(\xi) = \int_{a+\xi}^{b} f(x) \, \mathrm{d}x.$$

ii. Calculamos $\int_a^{b-\xi} f(x) dx$, con f continua en un intervalo cerrado $[a, b-\xi]$. Aquí se obtiene una función:

$$g(\xi) = \int_a^{b-\xi} f(x) \, \mathrm{d}x.$$

iii. Calculamos las integrales definidas $\int_a^{c-\xi} f(x) dx & \int_{c+\xi}^b f(x) dx$ en los intervalos cerrados $[a,c-\xi]$ & $[c+\xi,b]$, respectivamente. También aquí se obtiene una función:

$$g(\xi) = \int_a^{c-\xi} f(x) dx + \int_{c+\xi}^b f(x) dx.$$

Para cada caso tenemos una $g(\xi)$. Ahora proponemos $\xi \to 0^+$ y calculamos $\lim_{\xi \to 0^+} g(\xi)$. Finalmente, concluimos aclarando si la integral impropia converge o diverge, así como en los casos anteriormente ejemplificados. Esto es,

- Si $\lim_{\xi \to 0^+} g(\xi) = L$, con $L \in \mathbb{R}$, entonces la integral impropia correspondiente converge a L;
- Si $\lim_{\xi \to 0^+} g(\xi) = \infty$, entonces la integral impropia correspondiente diverge a ∞ .

Ejemplo 2.7.7 Calcular la integral impropia $\int_{1}^{5} \frac{dx}{\sqrt{x-1}}$.

▼ La función $f(x) = \frac{\mathrm{d}x}{\sqrt{x-1}}$ es continua en todo su dominio $D_f = (1, +\infty)$ y además la recta x = 1 es una asíntota vertical para f ya que $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{\sqrt{x-1}} = +\infty$.

Entonces, la integral $\int_1^5 \frac{dx}{\sqrt{x-1}}$ es impropia con f continua en el intervalo (1, 5]. Evitamos el punto problemático x=1 tomando un número $\xi>0$ y considerando el intervalo cerrado $[1+\xi,5]$ donde f es continua.

Calculamos la integral definida $\int_{1+\xi}^{5} \frac{\mathrm{d}x}{\sqrt{x-1}}.$

$$\int_{1+\xi}^{5} \frac{\mathrm{d}x}{\sqrt{x-1}} = \int_{1+\xi}^{5} (x-1)^{-\frac{1}{2}} \, \mathrm{d}x = 2(x-1)^{\frac{1}{2}} \Big|_{1+\xi}^{5} = 2\sqrt{x-1} \Big|_{1+\xi}^{5} = 2\sqrt{5-1} - 2\sqrt{1+\xi-1} = 2(2) - 2\sqrt{\xi} = 4 - 2\sqrt{\xi}.$$

Se tiene aquí la función $g(\xi) = 4 - 2\sqrt{\xi}$.

Calculamos $\lim_{\xi \to 0^+} g(\xi)$:

$$\lim_{\xi \to 0^+} g(\xi) = \lim_{\xi \to 0^+} \left[4 - 2\sqrt{\xi} \right] = 4 - 2(0) = 4.$$

Es decir,

$$\lim_{\xi \to 0^+} g(\xi) = \lim_{\xi \to 0^+} \int_{1+\xi}^5 \frac{\mathrm{d}x}{\sqrt{x-1}} = 4.$$

Se tiene en este caso que la integral impropia $\int_1^5 \frac{\mathrm{d}x}{\sqrt{x-1}}$ converge a 4 y escribimos $\int_1^5 \frac{\mathrm{d}x}{\sqrt{x-1}} = 4$. Esto es, se asigna el valor numérico 4 a la integral impropia $\int_1^5 \frac{\mathrm{d}x}{\sqrt{x-1}}$.

Ejemplo 2.7.8 Calcular la integral impropia $\int_2^4 \frac{dx}{(x-2)^2}$.

► La función $f(x) = \frac{1}{(x-2)^2}$ es continua en todo su dominio $D_f = \mathbb{R} - \{2\}$ y además la recta x = 2 es una asíntota vertical para f ya que $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{1}{(x-2)^2} = +\infty$, así como $\lim_{x \to 2^-} f(x) = +\infty$.

Entonces, la integral $\int_2^4 \frac{\mathrm{d}x}{(x-2)^2}$ es impropia con f continua en el intervalo (2,4]. Evitamos el punto problemático x=2 tomando un número $\xi>0$ y considerando el intervalo cerrado $[2+\xi,4]$ donde f es continua. Ahora bien,

$$\int_{2+\xi}^{4} \frac{\mathrm{d}x}{(x-2)^2} = \int_{2+\xi}^{4} (x-2)^{-2} \, \mathrm{d}x = \frac{(x-2)^{-1}}{-1} \Big|_{2+\xi}^{4} = -\frac{1}{x-2} \Big|_{2+\xi}^{4} =$$

$$= -\frac{1}{4-2} + \frac{1}{2+\xi-2} = -\frac{1}{2} + \frac{1}{\xi} = \frac{1}{\xi} - \frac{1}{2}.$$

Veamos la función $g(\xi) = \frac{1}{\xi} - \frac{1}{2}$.

Esta función cumple:

$$\lim_{\xi\to 0^+}g(\xi)=\lim_{\xi\to 0^+}\left[\frac{1}{\xi}-\frac{1}{2}\right]=+\infty.$$

Es decir,

$$\lim_{\xi \to 0^+} g(\xi) = \lim_{\xi \to 0^+} \int_{2+\xi}^4 \frac{\mathrm{d}x}{(x-2)^2} = +\infty.$$

Entonces, en este caso, la integral impropia $\int_2^4 \frac{dx}{(x-2)^2}$ diverge a $+\infty$, y no se asigna un valor numérico a esta integral impropia.

Ejemplo 2.7.9 Calcular la integral impropia $\int_{1}^{2} \frac{dx}{\sqrt[3]{2-x}}$

▼ La función $g(x) = \frac{1}{\sqrt[3]{2-x}}$ es continua en todo su dominio $D_g = \mathbb{R} - \{2\}$ y además la recta x = 2 es una asíntota vertical ya que $\lim_{x \to 2^-} g(x) = \lim_{x \to 2^-} \frac{1}{\sqrt[3]{2-x}} = +\infty$.

Entonces, la integral $\int_1^2 \frac{\mathrm{d}x}{\sqrt[3]{2-x}}$ es impropia, con g continua en el intervalo [1, 2). Evitamos el punto problemático x=2 tomando un número $\xi>0$ y considerando el intervalo cerrado [1, 2 – ξ] donde g es continua. Ahora,

$$\int_{1}^{2-\xi} \frac{\mathrm{d}x}{\sqrt[3]{2-x}} = \int_{1}^{2-\xi} (2-x)^{-\frac{1}{3}} \, \mathrm{d}x = -\frac{3}{2} (2-x)^{\frac{2}{3}} \Big|_{1}^{2-\xi} =$$

$$= -\frac{3}{2} \left[2 - (2-\xi) \right]^{\frac{2}{3}} + \frac{3}{2} (2-1)^{\frac{2}{3}} = -\frac{3}{2} (\xi)^{\frac{2}{3}} + \frac{3}{2} (\xi)^{\frac{2}{3}} = -\frac{3}{2} (\xi)^{\frac{2}{3}} + \frac{3}{2} (\xi)^{\frac{2}{3}} = -\frac{3}{2} (\xi)^{\frac{2}{3}} + \frac{3}{2} (\xi)^{\frac{2}{3}} = -\frac{3}{2} (\xi)^{\frac{2$$

Se tiene aquí la función $h(\xi) = \frac{3}{2} - \frac{3}{2}(\xi)^{\frac{2}{3}}$.

Entonces:

$$\lim_{\xi \to 0^+} h(\xi) = \lim_{\xi \to 0^+} \frac{3}{2} \left(1 - (\xi)^{\frac{2}{3}} \right) = \frac{3}{2} \lim_{\xi \to 0^+} \left(1 - \sqrt[3]{\xi^2} \right) = \frac{3}{2}$$

Es decir,

$$\lim_{\xi \to 0^+} h(\xi) = \lim_{\xi \to 0^+} \int_1^{2-\xi} \frac{\mathrm{d}x}{\sqrt[3]{2-x}} = \frac{3}{2}.$$

Por lo tanto, la integral impropia $\int_{1}^{2} \frac{dx}{\sqrt[3]{2-x}}$ converge al número $\frac{3}{2}$ y escribimos $\int_{1}^{2} \frac{dx}{\sqrt[3]{2-x}} = \frac{3}{2}$.

Ejemplo 2.7.10 Calcular la integral impropia $\int_0^3 \frac{\mathrm{d}x}{(3-x)^3}$.

► La función $f(x) = \frac{1}{(3-x)^3}$ es continua en su dominio $D_f = \mathbb{R} - \{3\}$ y además la recta x = 3 es una asíntota vertical ya que $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} \frac{1}{(3-x)^3} = +\infty$.

Entonces, la integral $\int_0^3 \frac{dx}{(3-x)^3}$ es impropia, con f continua en el intervalo [0,3). Evitamos al punto problema x=3 tomando un número real $\xi>0$ y considerando el intervalo cerrado $[0,3-\xi]$ donde f es continua. Ahora bien,

$$\int_0^{3-\xi} \frac{\mathrm{d}x}{(3-x)^3} = \int_0^{3-\xi} (3-x)^{-3} \, \mathrm{d}x = -\frac{(3-x)^{-2}}{-2} \Big|_0^{3-\xi} = \frac{1}{2(3-x)^2} \Big|_0^{3-\xi} =$$

$$= \frac{1}{2[3-(3-\xi)]^2} - \frac{1}{2(3-0)^2} = \frac{1}{2\xi^2} - \frac{1}{18}.$$

Tenemos aquí la función $g(\xi) = \frac{1}{2\xi^2} - \frac{1}{18}$.

De lo que se obtiene

$$\lim_{\xi \to 0^+} g(\xi) = \lim_{\xi \to 0^+} \left[\frac{1}{2\xi^2} - \frac{1}{18} \right] = +\infty.$$

Es decir,

$$\lim_{\xi \to 0^+} g(\xi) = \lim_{\xi \to 0^+} \int_0^{3-\xi} \frac{\mathrm{d}x}{(3-x)^3} = +\infty.$$

Por lo tanto, la integral impropia $\int_0^3 \frac{dx}{(3-x)^3}$ diverge a $+\infty$.

Ejemplo 2.7.11 Calcular la integral impropia $\int_0^3 \frac{dx}{\sqrt[3]{x-1}}$.

► La función $g(x) = \frac{1}{\sqrt[3]{x-1}}$ es continua en todo su dominio $D_g = \mathbb{R} - \{1\}$ y además la recta x = 1 es una asíntota vertical de g ya que $\lim_{x \to 1^-} g(x) = \lim_{x \to 1^-} \frac{1}{\sqrt[3]{x-1}} = -\infty$ & $\lim_{x \to 1^+} \frac{1}{\sqrt[3]{x-1}} = +\infty$.

Entonces, la integral $\int_0^3 \frac{dx}{\sqrt[3]{x-1}}$ es impropia, con g continua en el intervalo [0,3] excepto en x=1 donde tiene una discontinuidad infinita.

Aislamos el punto problemático x=1 tomando un número $\xi>0$ y considerando los intervalos cerrados $[0,1-\xi]$ & $[1+\xi,3]$ donde la función g es continua. Ahora bien, por la propiedad de aditividad respecto al intervalo:

$$\int_0^3 g(x) \, \mathrm{d}x = \int_0^1 g(x) \, \mathrm{d}x + \int_1^3 g(x) \, \mathrm{d}x,$$

donde las integrales $\int_0^1 \frac{dx}{\sqrt[3]{x-1}} & \int_1^3 \frac{dx}{\sqrt[3]{x-1}}$ son impropias.

Por esta razón calculamos la suma de las integrales

$$\int_{0}^{1-\xi} \frac{\mathrm{d}x}{\sqrt[3]{x-1}} + \int_{1+\xi}^{3} \frac{\mathrm{d}x}{\sqrt[3]{x-1}} = \int_{0}^{1-\xi} (x-1)^{-\frac{1}{3}} \, \mathrm{d}x + \int_{1+\xi}^{3} (x-1)^{-\frac{1}{3}} \, \mathrm{d}x =$$

$$= \frac{3}{2}(x-1)^{\frac{2}{3}} \Big|_{0}^{1-\xi} + \frac{3}{2}(x-1)^{\frac{2}{3}} \Big|_{1+\xi}^{3} =$$

$$= \Big[\frac{3}{2}(1-\xi-1)^{\frac{2}{3}} - \frac{3}{2}(0-1)^{\frac{2}{3}} \Big] + \Big[\frac{3}{2}(3-1)^{\frac{2}{3}} - \frac{3}{2}(1+\xi-1)^{\frac{2}{3}} \Big] =$$

$$= \frac{3}{2}(-\xi)^{\frac{2}{3}} - \frac{3}{2}(-1)^{\frac{2}{3}} + \frac{3}{2}(2)^{\frac{2}{3}} - \frac{3}{2}(\xi)^{\frac{2}{3}} =$$

$$= \frac{3}{2} \Big[\sqrt[3]{(-\xi)^{2}} - \sqrt[3]{(-1)^{2}} + \sqrt[3]{(2)^{2}} - \sqrt[3]{(\xi)^{2}} \Big] =$$

$$= \frac{3}{2} \Big[\sqrt[3]{\xi^{2}} - \sqrt[3]{1} + \sqrt[3]{4} - \sqrt[3]{\xi^{2}} \Big] = \frac{3}{2} \Big[\sqrt[3]{4} - 1 \Big].$$

Para luego calcular

$$\lim_{\xi \to 0^+} \left[\int_0^{1-\xi} \frac{\mathrm{d}x}{\sqrt[3]{x-1}} + \int_{1+\xi}^3 \frac{\mathrm{d}x}{\sqrt[3]{x-1}} \right] = \lim_{\xi \to 0^+} \left[\frac{3}{2} \left(\sqrt[3]{4} - 1 \right) \right] = \frac{3}{2} \left(\sqrt[3]{4} - 1 \right).$$

y debido a que, cuando $\xi \to 0^+$

$$\left[\int_0^{1-\xi} \frac{\mathrm{d}x}{\sqrt[3]{x-1}} + \int_{1+\xi}^3 \frac{\mathrm{d}x}{\sqrt[3]{x-1}} \right] \longrightarrow \int_0^3 \frac{\mathrm{d}x}{\sqrt[3]{x-1}},$$

podemos decir que la integral impropia $\int_0^3 \frac{\mathrm{d}x}{\sqrt[3]{x-1}}$ converge a $\frac{3}{2} \left(\sqrt[3]{4} - 1 \right)$.

Es decir,

$$\int_0^3 \frac{\mathrm{d}x}{\sqrt[3]{x-1}} = \frac{3}{2} \left(\sqrt[3]{4} - 1 \right).$$

Ejercicios 2.7.2 Integrales impropias. Soluciones en la página 13

11

1.
$$\int_{1}^{5} \frac{dx}{\sqrt{x-1}}$$
.

2.
$$\int_{1}^{5} \frac{\mathrm{d}x}{(x-1)^2}$$
.

3.
$$\int_{1}^{3} \frac{\mathrm{d}x}{\sqrt{3-x}}$$
.

4.
$$\int_{1}^{3} \frac{\mathrm{d}x}{(3-x)^3}$$
.

5.
$$\int_0^2 \frac{\mathrm{d}x}{\sqrt[3]{2-x}}$$
.

$$6. \int_0^e \ln x \, \mathrm{d}x.$$

7.
$$\int_0^e x \ln x \, \mathrm{d}x.$$

8.
$$\int_0^1 \frac{-e^{\frac{1}{x}}}{x^2} dx$$
.

9.
$$\int_0^4 \frac{dx}{(x-1)^2}$$
.

10.
$$\int_1^e \frac{\mathrm{d}x}{x \ln x}.$$

11.
$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x^2}}.$$

12.
$$\int_0^{\frac{\pi}{2}} \tan x \, dx$$
.

13.
$$\int_{1}^{3} \frac{\mathrm{d}x}{\sqrt[3]{x-2}}$$
.

14.
$$\int_0^1 x^2 \ln x \, dx$$
.

15.
$$\int_0^1 \frac{e^{-x}}{\sqrt{1 - e^{-x}}} \, \mathrm{d}x.$$

16.
$$\int_0^1 \frac{\mathrm{d}x}{1-x^2}$$
.

17.
$$\int_{1}^{2} \frac{x \, \mathrm{d}x}{x^2 - 1}.$$

18.
$$\int_0^2 \frac{x \, dx}{\sqrt{4 - x^2}}.$$

Ejercicios 2.7.1 Integrales impropias. Preguntas, página 6

- 1. Converge a $\frac{1}{3}$.
- 2. Diverge a ∞ .
- 3. Converge a 2.
- 4. Diverge a ∞.5. Converge a 3.
- 6. Diverge a ∞.
- 7. Converge a $\frac{2}{e}$.

- 8. Converge a 1.
- 9. Converge a 1.
- 10. Converge a 0.
- 11. Converge a 2.
- 12. Converge a $\frac{\pi^2}{8}$
- 13. Diverge a ∞ .

- 14. Converge a $\frac{\pi}{4}$.
- 15. Converge a $-\frac{1}{2}$
- 16. Converge a $\frac{\pi}{2}$.
- 17. Diverge a ∞ .
- 18. Diverge a ∞ .

Ejercicios 2.7.2 Integrales impropias. Preguntas, página 11

- 1. Converge a 4.
- 2. Diverge a ∞ .
- 3. Converge a $2\sqrt{2}$.
- **4.** Diverge a ∞ .
- 5. Converge a $\frac{3}{\sqrt[3]{2}}$.
- 6. Converge a 0.

- 7. Converge a $\frac{e^2}{4}$.
- 8. Converge a $\frac{1}{e}$
- 9. Diverge a ∞ .
- 10. Diverge a ∞ .
- 11. Converge a $\frac{\pi}{2}$.
- 12. Diverge a ∞ .

- 13. Converge a 0.
- 14. Converge a $-\frac{1}{9}$.
- 15. Converge a $2\sqrt{1-e^{-1}}$.
- 16. Diverge a ∞ .
- 17. Diverge a ∞ .
- 18. Converge a 2.