CAPÍTULO

1

Los números reales

1.7.2 Desigualdades tipo $ax + b \ge cx + d$

Resolver una desigualdad como ésa significa, en útima instancia, hallar otra desigualdad equivalente, esto es, que tenga el mismo conjunto solución, pero donde *x* aparezca sola en uno de los miembros. Significa pues despejar la *x*. Resolver la desigualdad recuerda mucho resolver una ecuación de primer grado con una incógnita.

Podemos trasponer términos y escribir en un mismo miembro todos los términos que tienen x, y en el otro los que no:

$$ax - cx > d - b$$
.

Ahora <u>reducir</u> términos semejantes, es decir, <u>poner *x* como factor común:</u>

$$(a-c)x \ge d-b.$$

Ahora si $a-c \neq 0$ (si $a \neq c$), llegamos a $a_1x+b_1 \geq 0$, por lo que:

1. Si a - c > 0, entonces $x \ge \frac{d - b}{a - c}$.

Y el conjunto solución será:

$$CS = \left[\frac{d-b}{a-c}, +\infty \right) .$$

2. Si a-c < 0, entonces $x \le \frac{d-b}{a-c}$. En este caso el conjunto solución es

$$CS = \left(-\infty, \frac{d-b}{a-c}\right].$$

¹canek.azc.uam.mx: 22/5/2008

Si a - c = 0, la desigualdad equivalente a la propuesta es:

$$0 \cdot x > d - b \implies 0 > d - b$$
.

La cual se cumple si efectivamente $0 \ge d - b$, en cuyo caso el conjunto solución es

$$CS = \mathbb{R}$$
.

O bien nunca se cumple si d-b>0, y en este caso el conjunto solución es \mathcal{O} , el conjunto vacío; es decir,

$$CS = \emptyset$$
.

Geométricamente resolver la desigualdad $ax + b \ge cx + d$ quiere decir hallar las x tales que la recta y = ax + b corta a la recta y = cx + d o bien está por encima de ella.

Ejemplo 1.7.1 Resolver la designaldad $4x - 5 \ge 2x + 9$.

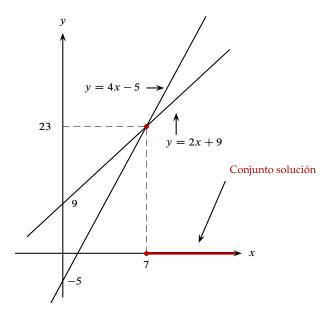
▼

$$4x - 5 \ge 2x + 9 \Leftrightarrow 4x - 2x \ge 9 + 5 \Leftrightarrow 2x \ge 14 \Leftrightarrow x \ge 7$$
.

Esta última desigualdad se satisface cuando $x \in [7, +\infty)$. Luego el conjunto solución de la desigualdad original es

$$CS = [7, +\infty)$$
.

Geométricamente se tiene:



Podemos también resolver la desigualdad hallando la intersección de las rectas y = 4x - 5 & y = 2x + 9 y visualizando cuál de las dos está por encima de la otra.

Ejemplo 1.7.2 Resolver la designaldad
$$\frac{5}{4}x - \frac{2}{3} > \frac{8}{3}x - \frac{3}{2}$$
.

Capítulo 1

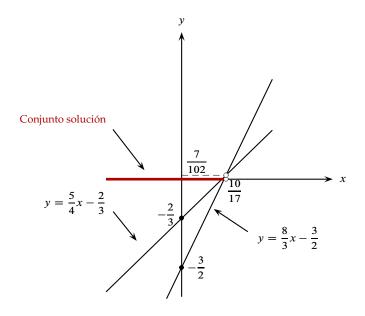
▼

$$\frac{5}{4}x - \frac{2}{3} > \frac{8}{3}x - \frac{3}{2} \iff \frac{5}{4}x - \frac{8}{3}x > \frac{2}{3} - \frac{3}{2} \iff -\frac{17}{12}x > -\frac{5}{6} \iff x < \frac{10}{17}.$$

Esta última desigualdad se cumple cuando $x \in \left(-\infty, \frac{10}{17}\right)$, por lo cual el conjunto solución de la desigualdad original es

$$CS = \left(-\infty, \frac{10}{17}\right)$$
.

Geométricamente se tiene:



Ejemplo 1.7.3 Resolver la designaldad 1 - 8x < 5 - 8x.

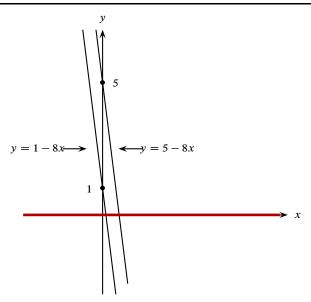
V

$$1 - 8x < 5 - 8x \Leftrightarrow -8x + 8x < 5 - 1 \Leftrightarrow 0 < 4$$
.

Esta última desigualdad siempre se cumple, luego la desigualdad original siempre se cumple. Por lo tanto el conjunto solución es

$$CS = \mathbb{R}$$
.

Geométricamente:



Para cualquier valor de x el valor de y = 5 - 8x es siempre mayor que el valor de y = 1 - 8x.

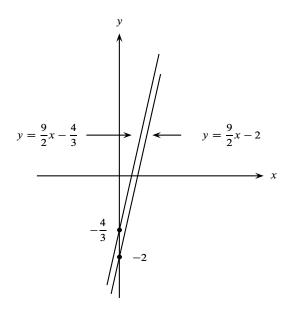
Ejemplo 1.7.4 Resolver la designaldad $\frac{9}{2}x - \frac{4}{3} \le \frac{9}{2}x - 2$.

▼

$$\frac{9}{2}x - \frac{4}{3} \le \frac{9}{2}x - 2 \Leftrightarrow \frac{9}{2}x - \frac{9}{2}x \le -2 + \frac{4}{3} \Leftrightarrow 0 \le -\frac{2}{3}.$$

$$CS = \emptyset, \text{ es el conjunto vacío.}$$

Geométricamente:



Para ningún valor de x el valor de $y = \frac{9}{2}x - \frac{4}{3}$ es menor que el valor de $y = \frac{9}{2}x - 2$.

Ejercicios 1.7.2 Soluciones en la página 6

Resolver las siguientes desigualdades:

Capítulo 1 5

1.
$$1-2x > \frac{x}{2} - 3$$
.

$$2. -5x - 4 \ge 3 - 6x.$$

3.
$$\frac{-3}{4}x + \frac{5}{3} < \frac{2}{9}x - 1$$
.

4.
$$3 - 5x \le 6 - 5x$$
.

$$5. \ \frac{3}{2}x - 5 > 1 + \frac{3}{2}x.$$

6.
$$2(x+3) > 3(x-1) + 6$$
.

Ejercicios 1.7.2 Desigualdades del tipo: $ax + b \ge cx + d$, página 4

1.
$$\left(-\infty, \frac{8}{5}\right)$$
.

4.
$$\mathbb{R} = (-\infty, +\infty)$$
.

2.
$$[7, +\infty)$$
.

$$3. \left(\frac{96}{35}, +\infty\right).$$

6.
$$(-\infty, 3)$$
.